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Curvature of the vapour pressure curve
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Abstract

This paper brings out the existence of the maximum in the curvature of the vapour pressure curve. It occurs in the reduced temperature
range of 0.6–0.7 for all liquids and has a value of 3.8–4.8. A set of 17 working fluids consisting of several refrigerants, carbon dioxide,
cryogenic liquids and water are taken as test fluids. There exists also a minimum close to the critical point which can be observed only
when a thermodynamically consistent functional form of the vapour pressure equation is chosen. This feature, in addition to throwing some
light on the behaviour of the vapour pressure curve, could provide some useful inputs to the choice of working fluids for vapour pressure
thermometers and thermostatic expansion valves. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The shape of the vapour pressure curve of liquids has
been a topic of investigation for several researchers. Numer-
ous ways of representing it have been reported in the litera-
ture [1]. The vapour pressure curve is also the starting point
for the choice of working fluids of heat engines, refrigera-
tion systems and heat pumps. It is the basis for the choice
of bulb fluids of vapour pressure thermometers and thermo-
static expansion valves. In addition, several of these engi-
neering systems require the slope and the second derivative
of the vapour pressure curve. For example, the response of
a thermostatic expansion valve or a vapour pressure ther-
mometer or dynamic response of an evaporator in a refrig-
eration system require information on the derivatives of the
vapour pressure curve. It is a balance among various criteria
that guides the designers towards the choice of a particular
fluid. In general, designers like to operate those systems in
the linear portion of a property curve. However, since this is
almost impossible in the case of the vapour pressure curve,
the next alternative will be to operate at a point where the
effects of non-linearity are the least. A description of the
shape of the vapour pressure curve has been made through
the value of acentric parameter (ω = −logpr − 1 at a re-
duced temperature of 0.7) and the Rieldel parameter (α =
d lnp/d ln T ). On the other hand a better way of defining
the shape of the curve could be the curvature itself. In this
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paper, it is brought out that most of the fluids exhibit a
maximum in the reduced curvature of the vapour pressure
curve, which occurs within a small spread of the reduced
temperature. But, the value of the maximum reduced curva-
ture shows an appreciable variation which is predominantly
governed by the nature of the liquid. The existence of this
maximum is yet another one further to the ones reported ear-
lier [2–5]. The existence of a minimum in the curvature near
the critical point, however, can not be predicted unless the
functional form of the vapour pressure curve is appropriately
chosen.

2. Curvature of the vapour pressure curve

The reduced curvature (inverse of the radius of curvature)
of the vapour pressure curve at a given temperature is defined
as

ρr = d2pr/dT 2
r

[1 + (dpr/dTr)2]3/2
(1)

wherepr is the reduced pressure (= p/pc) and Tr the re-
duced temperature (= T/T c). The derivatives appearing in
the above equation can be obtained if the functional form
of the vapour pressure equation is known. There are sev-
eral forms of this equation. Notable ones among them are
(i) equation derived from the Clausius–Clapeyron equation
with constant heats of vaporization

ln pr = A0

(
1 − 1

Tr

)
(2)
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(ii) due to Wagner [6]

ln pr

= [A1(1−1/Tr)+A2(1−1/Tr)
1.5+A3(1−1/Tr)

2+ . . . ]

Tr
(3)

and (iii) Riedel [7]

ln pr = A + B

Tr
+ C ln Tr + DT6

r (4)

Use of Eq. (2) in Eq. (1) yields

ρr = A0prT
3
r

A0/(Tr − 2)

(T 4
r + A2

0p
2
r )

3/2
(5)

Eqs. (3) and (4) yield more complicated albeit algebraic
equations.

3. Results and discussion

A plot of reduced curvature for methane using Eq. (2) with
A0 = 5.4 which is evaluated based on the data over the entire
liquid–vapour coexistence region measured by Kleinrahm
and Wagner [8] and Eq. (3) is shown in Fig. 1. In that
figure the variation of curvature derived from the modified
Wagner equation for methane [9] is also shown. Both show
the existence of the maximum at the sameTr, but the value
of the maximum with Eq. (2) is slightly larger than with
Eq. (3). The value ofTr at the maximum can be found by
solving the equation:

dρr

dTr
= 0 (6)

which for Eq. (2) reduces to solution of

6T 6
r − 6A0T

5
r + A2

0T
4
r − 6A2

0p
2
r T

2
r

+6A3
0p

2
r Tr − 2A4

0p
2
r = 0 (7)

Fig. 1. Variation of reduced curvature of the vapour pressure curve for methane: (×) Eq. (2) with A0 = 5.4; (s) Eq. (3).

For methane, one of the roots of interest isT r = 0.623
which is the same as seen in Fig. 1. However, the value of the
reduced curvature at this reduced temperature is 3.91 with
Eq. (2) and 3.80 if Eq. (3) is used. Such a close agreement
is not surprising because in the low pressure region validity
of constancy of heat of vaporization, which is the basis for
Eq. (2), is a fair approximation.

Although it appears, prima facie that Eqs. (2) and (3)
virtually yield the same curvature over the whole saturation
line, an expanded version of Fig. 1 near the critical point,
shown in Fig. 2, indicates that Eq. (3) shows a minimum
very near the critical point, which is not replicated by the
Eq. (2). For this figure a value ofA0 = 5.83 based on
data between 185 K and the critical point [8] is used. In
Fig. 2, the variation of the Riedel parameter for methane
near the critical temperature derived using Eq. (3) is also
shown. The existence of a minimum for this parameter has
been predicted by Planck and Riedel [10] and confirmed
by several investigators [6,11]. Yet, it is apparent that the
minima in curvature and the Rieldel parameter do not occur
at the same reduced temperature.

As the critical point is an abrupt discontinuity in the
liquid–vapour coexistence curve, the radius of curvature
there should be zero implying that the curvature→ ∞. This
implies that d2pr/dT r

2 → ∞ at the critical point. The Wag-
ner equation through one of the (1− T r) terms with 1<

power < 2, ensures that this criterion is satisfied. In the
same vein, dα/dT → ∞ at the critical point. The main dif-
ference between the curvature and the Rieldel parameter is
that the former rapidly rises from the point of minimum to
∞ whereas the latter increases a finite value (typically in
the range of 5–7). From these arguments it can be deduced
that the vapour pressure curve is the closest to being linear
very near the critical point.

Table 1 shows the data on reduced maximum curvature,
reduced pressures and temperatures at the point of maximum
curvature for several fluids by extending the above analysis.
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Fig. 2. Same as Fig. 1 but expanded near the critical point with the addition of reduced Riedel parameter: (×) Eq. (2) with A0 = 5.83; (s) Eq. (3);
(d) reduced Riedel parameter (right ordinate).

Fig. 3 shows the plot of reduced curvature versus reduced
temperature for some of those fluids. The specimens inves-
tigated cover a wide range of fluids of interest, e.g. from
non-polar cryogenic liquids to polar refrigerants. It can be
seen that the reduced curvature goes through a maximum
value at 0.6 < T r < 0.7 for most the fluids considered
here. Carbon dioxide [27] does not depict this feature as its
reduced triple point is> 0.7. There is a close analogy be-
tween several polar fluids. Cryogenic liquids and ethylene
show a marked deviation. Firstly, the value of the maximum
is smaller and it occurs at a lower temperature compared to
the other fluids. The value of the reduced pressure (pr) at the
point of maximum curvature was found to be in the range
of 0.033 (R-245fa) to 0.041 (C6F14).

Fig. 4 shows the expanded zone near the critical point.
Here again, it can be observed that vapour pressure equa-

Table 1
Sources of data and reduced properties for the fluids investigated

Fluid Source ρr max pr at ρr max Tr at ρr max

Argon [12] 3.78 0.037 0.617
Xenon [13] 3.80 0.038 0.621
Methane [9] 3.80 0.036 0.619
Nitrogen [14] 3.90 0.036 0.626
Ethylene [15] 4.04 0.036 0.637
R-32 [16] 4.47 0.035 0.672
R-123 [17] 4.55 0.035 0.672
R-125 [18] 4.61 0.034 0.675
R-134a [19] 4.64 0.034 0.679
R-143a [20] 4.45 0.036 0.671
R-152a [21] 4.49 0.035 0.673
R-227ca [22] 4.71 0.034 0.683
R-245fa [23] 4.72 0.033 0.683
C6F14 [24] 4.64 0.041 0.701
HFE-245 [25] 4.93 0.033 0.680
Water [26] 4.60 0.038 0.689

tions other than the ones of Wagner type, as in the case of
R-245fa [23], or the Wagner type without a term having a
power between 1 and 2, as in the case of C6F14 [24], are
unable to depict the existence of the minimum. From the
thermodynamic point of view the need for defining an ap-
propriate functional form of the vapour pressure equation
need not be over emphasized.

The practical implications of this study are as follows: in
the construction of vapour pressure thermometers, one likes
to have a good dynamic response. Given that these tempera-
ture sensors are non-linear, it is expected that if the fluid has
the maximum curvature in the zone of interest, the response
will be large enough to allow stable manipulation. In the
light of extremely precise pressure measurement techniques
being available now, this could be a feature that can be used
in the construction of these instruments. This zone of maxi-
mum dynamic response will be at pressures above but closer
to atmospheric for the fluids that have the critical pressure
higher than about 30 bar. For very high molecular weight
organic compounds (e.g. propane family refrigerants) the
critical pressures are smaller than this value.

On the other hand, in the case of thermostatic expansion
valves, it will be preferable to operate away from the maxi-
mum curvature zone. Indeed, it is better to operate closer to
the critical point where the curvature is the least. Inciden-
tally, in this zone the gradient of the vapour pressure curve
is so large that the valve could respond fast to the changes
in the pressure at the outlet of evaporator.

For refrigeration systems with R-134a and other similar
ozone friendly fluids, one could use cross-charged thermo-
static expansion valves with the sensor bulb being filled
with a refrigerant whose molecular weight is larger than
that of R-134a. This necessitates adopting the propane fam-
ily of refrigerants for which the critical pressures are low.
The state of the bulb fluid can be closer to the critical, yet
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Fig. 3. Plot of reduced curvature of vapour pressure curve for several fluids: (r) Nitrogen; (h) CO2; (4) water; (s) R-32; (×) R-134a; (+) R-245fa;
(d) C6F14.

Fig. 4. Same as Fig. 3 but expanded near the critical point: (r) Nitrogen; (h) CO2; (4) water; (s) R-32; (×) R-134a; (+) R-245fa; (d) C6F14.

the pressure could be no more than 20 bar. This obviates
the need for using thick bulbs.

4. Conclusions

This article has brought out the existence of the maximum
and the minimum in the curvature of the vapour pressure
curve. The coordinates of the maximum are strong func-
tions of the nature of the liquid. These features could pro-
vide additional inputs for the choice of a functional form
for vapour pressure curves. The locations of the maximum
could be used as a guiding factor for the choice of the fluid
in vapour pressure thermometry and in sensor bulbs of the
thermostatic expansion valves used in refrigeration systems.
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